FOTOSYNTÉZA ZAJIŠŤUJE PŘEŽITÍ VEŠKERÉHO ŽIVOTA NA ZEMI. ALE TO NEZNAMENÁ, ŽE BY NESNESLA VYLEPŠENÍ
Frances Arnoldová je sice vystudovaná letecká inženýrka, svou Nobelovu cenu ovšem získala v oboru poměrně vzdáleném, v chemii. Nobelův výbor ji – a dva její kolegy a zároveň vědecké soupeře – ocenil za obrazně řečeno zkrocení evoluce pro potřeby vědy.
Podařilo se jí přijít se systémem pro „evoluci“ lepších enzymů. Enzymy jsou katalyzátory chemických reakcí v buňce, a tak mají celou řadu využíti v chemii či medicíně. Bohužel naše znalosti nejsou takové, abychom dokázali vytvořit nový, účinný enzym „na přání“. Arnoldová (za přispění řady dalších kolegů, na které se nedostalo) přišla s metodou řízení evoluce podle přání člověka.
Vytvořila laboratorní obdobu přirozeného výběru, ve kterém imperativ „přežij do další generace“ nahradil lidský příkaz, například „rychle se navaž na látku X“. Na to navazuje postup pro napodobení mutačního procesu, který umožňuje rychle měnit podobu dané chemické látky („mutace“) a rychle ověřovat jejich účinnost. A to vše – na rozdíl od evoluce – v časových měřítkách blízkých člověku. Dnes lze s pomocí řízené evoluce vyrábět nejen účinnější enzymy, než jsou ty přírodní, ale i enzymy, které umožňují v přírodě nedosažitelné reakce.
Metodu používají vědci i průmysl; třeba výrobu řady léčiv si bez ní dnes nelze představit. Arnoldová konzistentně tvrdí, že od začátku si byla jistá tím, že její výzkum je skutečně převratný. „Jen mi 20 let trvalo, než jsem o tom přesvědčila zbytek světa,“ řekla novinářům po udělení ceny.
CESTA KE SVĚTLU
My se ovšem věnujme tomu, co Arnoldová dělá dnes – a co by tedy teoreticky mohlo být zajímavé za dalších 20 let. Je vedoucí vlastní velké laboratoře na Kalifornské univerzitě, takže její záběr je samozřejmě širší (spoustu práce za ni udělají jiní). Jedno téma se ovšem v každém případě v její práci vrací – a to je využití solární energie. Na pohled nejde o žádnou technologickou novinku, koneckonců fotovoltaika a její využití v energetice je jedním z největší témat posledního desetiletí v oboru. Arnoldová ale má zamířeno na jiný cíl: fotosyntézu.
Oprašme školní znalosti: rostliny při fotosyntéze s pomocí slunečního záření štěpí vodu na kyslík, elektrony a nabité vodíkové ionty (protony). Protony a elektrony se pak slučují s oxidem uhličitým a vytvářejí cukr glukózu. Ta se pak v rostlině ukládá v podobě škrobu a celulózy, což jsou jednoduše molekuly glukózy s dlouhým řetězcem (takzvané polysacharidy), které slouží jako zdroj energie pro rostlinu i materiál pro její další růst. Nu, a „odpad“ z procesu, tedy kyslík, dává přežít nám i dalším tvorům.
Fotosyntéza není nijak efektivní proces. Maximální teoretická čistá účinnost (po odečtení veškerých respiračních ztrát) činí zhruba 4 % – rostlina tedy v ideálním případě může k vytvoření cukrů využít jen každý 25. foton, který na její listy dopadne. V průměru je to ještě podstatně méně, protože takto intenzivní může být proces pouze po krátkou dobu a za předpokladu dostatku vody a živin. Zavlažované a hnojené plodiny mohou během vegetačního období dosáhnout v průměru 2% účinnosti a nejproduktivnější lesy mírného a tropického pásu se blíží průměrné účinnosti 1,5 %. Globální kontinentální průměr činí pouze 0,33 %, a protože oceánský plankton mění na biomasu méně než 0,1 % dopadajícího záření, průměr za celou biosféru činí tedy ani ne 0,2 %. Takže ne každý 25., ale zhruba každý 500. foton je skutečně využit k růstu rostliny. Právě to je důvod, proč biopaliva nejsou a v dohledné době rozhodně nebudou vhodnou alternativou k jiným používaným palivům – vyprodukují na plochu příliš málo energie.
Proti tomu využití fotovoltaiky nabízí v praktických podmínkách účinnost kolem 15 % a v blízké budoucnosti ještě o něco více. Tak proč ztrácet čas s fotosyntézou?
ENERGIE SBALENÁ I NA CESTY
Odpověď je asi většině čtenářů jasná: fotosyntéza slouží k produkci energie připravené k uložení. Z fotovoltaiky sice dokážeme dnes již poměrně levně vyrábět elektřinu připravenou k okamžité spotřebě, ale problém jejího skladování je stále nevyřešený – přesněji řečeno, řešení jsou drahá. Samozřejmě, proces by se musel trochu změnit; glukózy prostě tolik nepotřebujeme.
Dobrou zprávou je, že již dnes víme o oblastech, ve kterých bychom účinnost přírodního procesu mohli naopak poměrně jednoduše překonat. Jednou možností je využití nanočástic s extrémně velikým povrchem k zachycování dopadajícího světla. Plocha takového materiálu může být na mikroskopické úrovni podstatně větší než u listu. Na pohled to sice není vidět, ale dnes dokážeme navrhovat materiály, jejichž povrch představuje pro světlo velmi účinnou past.
CO VLASTNĚ CHCEME
Nevyřešené problémy ovšem stále převažují. Největší a nejdůležitější výzva spadá do odborného ranku Frances Arnoldové. Její specialitou je vývoj nových enzymů, tedy katalyzátorů chemických reakcí v těle. A přesně v nich spočívá hlavní nevýhoda laboratorních „umělých listů“. Je zapotřebí vyvinout levnější, odolnější a také účinnější materiály, aby se vůbec dalo uvažovat o jejich nasazení v praxi.
Otevřenou otázkou je i to, který způsob využití získané energie je vlastně pro naše potřeby nejlepší. Bude výhodnější pracovat na lepších katalyzátorech pro proces sluneční katalýzy vody, tedy její rozklad na kyslík a vodík, který by pak mohl sloužit jako zdroj energie? Nebo bude lepší udělat ještě o krok více a rovnou v rámci jednoho procesu vytvářet uhlovodíková paliva, tedy v podstatě ekvivalent ropy?
První postup je přece jen jednodušší, a zdá se nejsnáze dosažitelný. Pokud to ovšem dovolí historie naší energetiky: současná infrastruktura totiž není na příchod vodíku připravena. „Dnes si s ním můžete maximálně nafouknout balónek,“ zavtipkoval před několika lety Daniel Nocera, který se na slavném americkém MIT věnoval právě vývoji umělé fotosyntézy. Vyrobil tehdy v laboratoři „křemíkový list“ (de facto křemíkovou oplatku s katalyzátorem), který měl za ideálních podmínek účinnost kolem 10 %.
Což je vše slibné, ale systém trpěl celou řadou neduhů, které nešlo jednoduše vyřešit, počínaje nízkou životností a konče stále ještě příliš vysokou cenou. A jak se Nocera brzy přesvědčil, sehnat na podobný program peníze je těžké. Jeho start-up se rychle přeorientoval na vývoj průtokových baterií, a pak se ho teprve podařilo prodat společnosti Lockheed Martin.
DRUHÁ GENERACE
Nocera se zatím svého nápadu nevzdal a v Indii pracuje na další generaci systému. Ta propojuje upravenou verzi jeho křemíkového listu s geneticky upravenou verzí bakterie živící se vodíkem (jak vidno, i vědci uznávají, že evoluce je v mnoha ohledech dále než jejich poznání). Bakterie se tedy živí vodíkem vznikajícím z článku a díky genetické úpravě produkují nejen biomasu, ale také alkoholy. Účinnost byla znovu kolem 10 %, a tak zhruba o řád vyšší než u běžných rostlin.
Nocera tentokrát zkouší jinou strategii a snaží se projekt prosadit v Indii, která má méně rozvinutou energetickou infrastrukturu. To znamená, že je do ní méně investováno a nabízí se příležitost vyzkoušet nezavedené postupy. V tomto případě by to mohla být výroba biopaliv ve speciálních tancích.
Ale na úspěch projektu bychom rozhodně neradili v tuto chvíli nikomu sázet. Všichni odborníci se vzácně shodují na tom, že v ceně nebude moci „umělá fotosyntéza“ fosilním palivům konkurovat. Není tedy příliš mnoho důvodů investovat ani do vývoje, ani do rozvoje. Arnoldová a Nocera jistě mohou přijít na spoustu zajímavých řešení, ale bez finanční injekce se dále nepohnou. A v takovém případě tedy ani 20 let nebude na přesvědčení zbytku světa stačit.
To neznamená, že výzkum je marný. Na výrobu paliva mohou být tyto systémy příliš drahé. Ovšem lepší katalyzátory mohou najít užití v oborech s výrazně větší marží, například v chemickém či farmaceutickém průmyslu. Kouzlo snu o „umělém listu“ spočívá v tom, že inspiruje. O mnoho více bychom od něj asi v blízké době čekat neměli.