Po smrti Antonína Holého již Česká republika nemá prakticky žádnou naději, že v dohledné době získá některý vědec z naší země Nobelovu cenu. A tak nám nezbývá než vzpomínat na jedinou příležitost, kdy při vyhlašování některé z nejslavnějších vědeckých cen padlo české jméno. Letos je to přesně 60 let, co Jaroslav Heyrovský mohl jet do Stockholmu za ocenění svého objevu tzv. polarografie. Na rozdíl od letošního ocenění vytvoření lithium-iontových baterií ho komise ocenila za vynález, se kterým se většina z nás v životě nesetká a o kterém téměř nic neví – což ovšem neznamená, že by nebyl důležitý. Pokud nevíte – či si jen nepamatujete – za co byla cena vlastně udělena, následující řádky jsou právě pro vás. Z nepraktických zač átků Jak to tak bývá, nejslavnější vědecký úspěch Jaroslava Heyrovského nespadl z nebe. Bylo to významné vylepšení staršího nápadu. Sám Heyrovský podle svědectví syna Michaela říkal, že jeho metoda nevznikla o několik desetiletí dříve pouze náhodou. Již vědci 19. století věděli, že soli rozpuštěné ve vodě reagují na přítomnost elektrického proudu. Když do slané vody dáte obě elektrody jedné baterie, bude záporná elektroda přitahovat kladně nabité ionty sodíku. Tam se ionty sloučí s elektrony a vyloučí se na elektrodě. Asi vás nepřekvapí, že hodnoty proudu procházející roztokem závisí na tom, kolik v něm je soli, a měřením procházejícího proudu lze zjistit, jak bohatý daný roztok je. Což při měření slanosti polévky asi nebudete potřebovat, pro chemiky pracující s exotickými sloučeninami je to ovšem zajímavý nástroj. To není vše. Ke všem výše popsaným jevům v roztoku nezačne docházet hned, jak do něj ponoříte elektrody a pustíte do nich libovolné napětí. Proces se rozjede až po překonání určité hladiny napětí, která je u každé látky jiná. Tzv. „ušlechtilé“ kovy, například měď či stříbro, se vylučují při nízkém napětí. Méně „ušlechtilé“ (zinek, hliník) při hodnotách vyšších. Elektrická analýzy roztoků tedy může pomoci určit jak jejich chemické složení, tak množství obsažených látek. Těžká praxe Ve skutečnosti není takové měření jednoduché – přesněji řečeno je prakticky nemožné. Přesnost omezuje celá řada „otravných“ drobností, kvůli kterým pouhým zastrčením dvou drátů do roztoku mnoho nezjistíte. Elektrody se vám například začnou zanášet vylučovaným materiálem, čímž se mění vlastnosti – a to prakticky znemožňuje přesné měření vlastností samotného roztoku. Navíc se „vyčerpává“ zásoba iontů v okolí elektrody a měřený proud pak kvůli tomu kolísá. Zásadní „zlepšov ák“ Heyrovský byl oceněn za to, že se mu podařilo omezení metody elegantně odstranit. Nahradil jednu elektrodu malou kapičkou rtuti kapající do roztoku ze „zásobníku“. Elektroda se tak udržuje čistá, protože se neustále obnovuje, navíc promíchává roztok a ionty v okolí elektrody se tak neustále obnovují. Znovu nešlo o zcela nový nápad, protože už v 50. letech 19. století sestrojil fyzik William Thomson jednoduchý přístroj, který měřil napětí v ovzduší rozprašováním malých kapiček vody a měřením jejich náboje. Další odborníci pracovali již přímo s rtuťovými „kapkovými elektrodami“, aby přišli na to, jak se v nich elektřina chová. Zdá se, že nikoho před Heyrovským nenapadlo spojit si jejich využití s pokusy o chemickou analýzu roztoků. Ostatně i sám Heyrovský s kapkami rtuti pracoval z jiného důvodu. Profesor Bohumil Kučera se ho během rigorózních zkoušek v roce 1918 zeptal na charakteristiku napětí v kapičkách rtuti. Byl to Kučerův obor a tehdy také zajímavá vědecká otázka, protože šlo o dobrý způsob, jak lépe popsat a pochopit chování vodivých látek i elektrického proudu. Heyrovský sice nastoupil do jiné laboratoře (k Bohuslavu Braunerovi), ovšem nadále se věnoval měření kapiček rtuti. Přitom dlouho nedokázal vysvětlit podstatu nezvyklých jevů, o kterých se u zkoušky bavil s Kučerou, ale díky své zvídavosti (a také snaze ušetřit si pracné vážení rtuťových kapek) zjistil, že v solných roztocích od určitého napětí měření probíhala zcela jinak, než bylo obvyklé. A také, že pak výsledek závisí na chemickém složení látek. Tak se před ním otevřela zcela nečekaná „odbočka“ k Nobelově ceně. Ryc hlý úspěch, delší čekání My dnes zcela přesně víme, kdy si pro ni Heyrovský vykročil. Bylo to 10. února 1922, když zaznamenal křivku měření průchodu proudu roztokem obyčejné kuchyňské soli. V říjnu vydal o metodě první, ještě český článek, který ani jednou nezmínil budoucí název metody: polarografie (ani slovo polarograf, tedy měřicí nástroj této metody). Ještě ten rok stihl i publikaci v zahraničí. V následujícím roce udělal Heyrovský přednášku o svém objevu na zasedání Faradayovy společnosti v Londýně. Výsledek zaujal japonského chemika Masuza Šikatu, který byl toho času v Berlíně, ale místo opustil, aby mohl pracovat v Praze. Společně pak sestavili přístroj pro automatický záznam křivek z měření, který v roce 1924 dostal název polarograf. Před 90 lety, v roce 1929, se začal průmyslově vyrábět a od té doby je tento relativně jednoduchý – a samozřejmě stále vylepšovaný – přístroj součástí vybavení chemických laboratoří po celém světě. Používá se dodnes napříč chemií a samozřejmě také v průmyslu. O jeho důležitosti svědčí i to, že profesor Heyrovský byl na Nobelovu cenu navržen celkem šestnáctkrát, poprvé roku 1934. Dodejme, že když v roce 1959 ji konečně získal, nebylo jisté, že si ji bude moci převzít. Například povolení k cestě mu bylo doručeno 7. prosince 1959 až těsně před startem letadla na letišti a do Stockholmu mohl letět s manželkou, ovšem bez dětí. /jj/